Issue |
E3S Web Conf.
Volume 286, 2021
10th International Conference on Thermal Equipments, Renewable Energy and Rural Development (TE-RE-RD 2021)
|
|
---|---|---|
Article Number | 01006 | |
Number of page(s) | 8 | |
Section | Thermal Equipments and Processes | |
DOI | https://doi.org/10.1051/e3sconf/202128601006 | |
Published online | 12 July 2021 |
The effects of split direct injection on the operation of a tractor diesel engine fueled by biodiesel B20
1 Faculty of Mechanical Engineering and Mechatronics, University Politehnica of Bucharest, Splaiul Independentei 313, 060042, Romania
2 EA7341 CMGPCE of Conservatoire National des Arts et Metiers, Paris, France
* Corresponding author: andrei.niculae@upb.ro
The use of biodiesel-diesel blends is a current solution to some important problems, such as the depletion of oil resources, global warming, and the pollutant emissions of smoke, carbon monoxide, and hydrocarbons of diesel engines. However, the use of this alternative fuel is characterized by a reduction in engine effective power and an increase in brake-specific fuel consumption and nitrogen oxide pollutant emissions. Using the AVL MCC zero-dimensional combustion model of the AVL BOOST simulation program, it was evaluated to what extent split injection strategies can improve the performance and fuel economy of a tractor diesel engine fuelled with biodiesel B20 at maximum brake torque condition considering noise and pollutant emissions limitation. Various pilot – main – post split injection strategies have been studied to establish the optimal injection characteristics in terms of performance and fuel economy. Subsequently, they have been adapted in terms of compliance with current emission standards. In this way, it has been emphasized that the split injection solution is a viable way to improve performance, economy, and pollutant emissions of a tractor diesel engine.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.