Issue |
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
|
|
---|---|---|
Article Number | 03005 | |
Number of page(s) | 6 | |
Section | Process Systems Engineering & Optimization | |
DOI | https://doi.org/10.1051/e3sconf/202128703005 | |
Published online | 06 July 2021 |
Simulation Comparison Between Equilibrium and Rate-Based Approach for CO2 Removal Via Promoted K2CO3 with Glycine
1 CO 2 Research center (CO2RES), Universiti Teknologi PETRONAS (UTP), Seri Iskandar, Perak, Malaysia
2 Faculty of Chemical and Natural Resources Engineering, Universiti Malaysia Pahang (UMP), Kuantan, Pahang, Malaysia
* Corresponding author: haslindazabiri@utp.edu.my
The main limitation of rate-based approach in Aspen Plus is the unavailability of the method under dynamic analysis. Hence, to support the development of the integrated process of natural gas treatment at a higher scale, a comprehensive equilibrium and rate-based simulations of CO2 removal via potassium carbonate promoted with glycine (PCGly) is conducted. The purpose of this study is to observe the efficiency of the equilibrium-based model to represent the CO2 removal system before the dynamic simulation can be developed. The validation is conducted based on published experimental data and the result shows that at steady state, the equilibrium-based method is able to predict the CO2 removal as satisfactorily as the rate-based approach. The error deviation between both methods is 2.11 % and through this study, it is shown that the equilibrium-based method is able to simulate the CO2-PGly system efficiently. Thus, this would enable further investigation of the CO2-PGly system under dynamic simulation using the equilibrium-based method.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.