Issue |
E3S Web Conf.
Volume 287, 2021
International Conference on Process Engineering and Advanced Materials 2020 (ICPEAM2020)
|
|
---|---|---|
Article Number | 03007 | |
Number of page(s) | 5 | |
Section | Process Systems Engineering & Optimization | |
DOI | https://doi.org/10.1051/e3sconf/202128703007 | |
Published online | 06 July 2021 |
Conceptual Framework for the Conservation of Natural Environment from Toxic Ionic Liquids by QSAR Model
Center of Advance Process Safety (CAPS) Universiti Teknologi PETRONAS Malaysia
* Corresponding author: dzulkarnain.zaini@utp.edu.my
The natural environment has been affected by human activities to fulfil daily life needs. Abundance and hazardousness of the chemicals including ionic liquids is one of the most challenging aspect to be handled by human as well as for the natural environment. Due to ionic structure, ionic liquids are very good choice for a variety of applications. The natural environment might be affected by the ionic liquids which can be toxic. Therefore, there is a need to address this problem by studying the ecotoxicological behaviour of these ionic liquids. The main objective of current research is to model the toxicity ecotoxicological behaviour is studied by quantitative structure activity relationship (QSAR). QSARs predicts the toxicity of ionic liquids. In current research a relationship between polarizability and toxicity for imidazolium ionic liquids with different alky chain length having NTF2 anion has been modelled. The success of current research will be very helpful to protect the nature by minimizing the killing of testing animals as well as ensuring the safety of biotic components of the ecosystem.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.