Issue |
E3S Web Conf.
Volume 288, 2021
International Symposium “Sustainable Energy and Power Engineering 2021” (SUSE-2021)
|
|
---|---|---|
Article Number | 01074 | |
Number of page(s) | 4 | |
DOI | https://doi.org/10.1051/e3sconf/202128801074 | |
Published online | 14 July 2021 |
Directions Of Hydrogen Power Development In Tatarstan Republic
Kazan State Power Engineering University, Russia
* Corresponding author: aachichirova@mail.ru
Green hydrogen is a promising solution for a decarbonized energy system, and in 2020 the use of hydrogen has increased dramatically around the world. In order to draw attention to the problem of hydrogen energy in Russia and the Republic of Tatarstan, the article analyzes the development paths and main opportunities for the production, transportation, and use of hydrogen at the enterprises of Tatarstan, and calculates the economic efficiency of the “green” hydrogen production by electrolysis at TPPs with CCGTs in Tatarstan. METHODS. Research methods are based on the analysis of literature data and mathematical calculations. RESULTS. Tatarstan, as one of the leading economically developed regions of Russia, could take part in the “green” hydrogen production, the electrochemical equipment design for its production, the development of technologies for the fuel cells use, research and training of highly qualified specialists in the field of hydrogen energy. According to the calculations, the production of the most environmentally friendly hydrogen at TPPs with CCGT in Tatarstan will currently cost an average of 2 euros per kilogram, which is significantly lower than the existing market value. CONCLUSION. Tatarstan can become a competitive region for the “green” hydrogen production and distribution. The main areas of activity should be the pure hydrogen production, the industrial production of freight transport on fuel cells, the production of megawatt-class electrolysers, the utilization of hydrogen-containing petroleum gases at TPPs in gas turbines or in combined cycle power plants with fuel cells.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.