Issue |
E3S Web Conf.
Volume 292, 2021
2021 2nd International Conference on New Energy Technology and Industrial Development (NETID 2021)
|
|
---|---|---|
Article Number | 01008 | |
Number of page(s) | 7 | |
Section | Energy Storage Saving and New Energy Technology Development | |
DOI | https://doi.org/10.1051/e3sconf/202129201008 | |
Published online | 09 September 2021 |
Potential effects of temperature levels on soil bacterial community structure
1 School of Life Science, Inner Mongolia University, China; Key Laboratory of Herbage & Endemic Crop Biotechnology, Ministry of Education, China
2 Inner Mongolia Academy of Agricultural & Animal Husbandry Sciences/ Inner Mongolia Conservation Tillage Engineering Technology Research Center/ Inner Mongolia Key Laboratory of Degradation Farmland Ecological Restoration and Pollution Control, China
* Corresponding author: lzhy2811@163.com zhaoxq204@163.com
Soil microorganisms play a crucial role in the response to global warming in terrestrial ecosystems. Soils with higher microbial diversity have more ecological functions, higher resistance to environmental stress and higher crop production capacity. At present, the research on the effect of temperature change on soil microorganisms mostly adopts the methods of outdoor infrared temperature measurement or exchange and transplantation of soil with different temperature zones. Here, we investigate how temperature gradients potentially affect soil bacterial communities to change. For this reason, we used indoor precise temperature control treatment and combined high-throughput sequencing with bioinformatics to systematically analyze the diversity and species composition of soil bacteria under different temperature gradients, and to clarify the variation trend and interaction relationships of different species with temperature gradients. The results showed that temperature significantly affected the Alpha diversity of soil bacterial communities (P<0.05).Soil bacteria has different sensitivity and adaptability to temperature. In the range of 0-40℃, insensitive bacteria includes Proteobacteria, Gemmatimonadetes and Chloroflexi. Sensitive bacteria includes Sphingomonas, Ellin6055 and norank_f_67-14. The main reaction types of two bacteria showed four trends: ① Proteobacteria and Sphingomonas showed an “arch” variation; ② Gemmatimonadetes and Chloroflexi showed “inverted arch”. ③ Norank_f_67-14 showed an “inverted S type” change; ④ Ellin6055 shows a” parabolic ” shape. In different classification levels such as phylum and genus, the higher the classification level is, the higher degree it is weakened by temperature on, and the lower the classification level is, the stronger effect temperature has on it. In short, when temperature changes, soil bacteria can respond positively or negatively according to their ability to adapt to temperature, and accordingly form certain regular changes.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.