Issue |
E3S Web Conf.
Volume 293, 2021
2021 3rd Global Conference on Ecological Environment and Civil Engineering (GCEECE 2021)
|
|
---|---|---|
Article Number | 02059 | |
Number of page(s) | 7 | |
Section | Environmental Energy and Civil Engineering and Water Conservancy Construction | |
DOI | https://doi.org/10.1051/e3sconf/202129302059 | |
Published online | 23 July 2021 |
Study on the compensating calcium ion method for existing concrete based on crystal infiltration waterproof materials
1 National Grid Fujian Electric Power Co., Ltd. Institute of Economics and Technology, Fuzhou 350012, China
2 School of Architecture and Civil Engineering, Xiamen University, Fujian 361005, China
* Corresponding author: 550818454@qq.com
The quality of the the existing concrete surface in its repairing and strengthening is the key factor affecting the together working performance. The effective method to solve this problem is to use permeable crystal waterproof material to strengthen the existing concrete surface. In view of the existing old concrete which lacks free Ca2+ in the interior, the method of compensating calcium ion strengthening is proposed based on the action mechanism of permeable crystalline waterproof material. On the basis of DPS, calcium ion compensating agent Ca (OH)2, Na2SiO3 (sodium silicate) and Na2CO3 (potassium carbonate) solutes are added to prepare composite reinforcement solution for impregnation strengthening of concrete. Scanning electron microscopy (SEM) was used to observe the microstructure of the concrete before and after strengthening. It showed that after the entry of silicate ions, C-S-H colloid was formed by reaction with Ca (OH)2, and C-S-H gel blocked some pores, which made the inner microstructure more compact. The results of compressive strength before and after concrete strengthening show that the strengthening effect of calcium ion compensation method for low-strength concrete is better than that of permeable crystallization material strengthening method. The strength of C5 and C15 grade concrete is increased by 36.1% and 6% respectively, and the surface strength of 13.7 MPa concrete is increased by 16.7%.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.