Issue |
E3S Web Conf.
Volume 297, 2021
The 4th International Conference of Computer Science and Renewable Energies (ICCSRE'2021)
|
|
---|---|---|
Article Number | 01032 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202129701032 | |
Published online | 22 September 2021 |
Dr. Phish: Phishing Website Detector
VESIT, Mumbai
Phishing is a common attack on credulous people by making them disclose their unique information. It is a type of cyber-crime where false sites allure exploited people to give delicate data. This paper deals with methods for detecting phishing websites by analyzing various features of URLs by Machine learning techniques. This experimentation discusses the methods used for detection of phishing websites based on lexical features, host properties and page importance properties. We consider various data mining algorithms for evaluation of the features in order to get a better understanding of the structure of URLs that spread phishing. To protect end users from visiting these sites, we can try to identify the phishing URLs by analyzing their lexical and host-based features.A particular challenge in this domain is that criminals are constantly making new strategies to counter our defense measures. To succeed in this contest, we need Machine Learning algorithms that continually adapt to new examples and features of phishing URLs.
Key words: phishing / anti-phishing / machine learning / cyber-crime / cyber-attack
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.