Issue |
E3S Web Conf.
Volume 302, 2021
2021 Research, Invention, and Innovation Congress (RI2C 2021)
|
|
---|---|---|
Article Number | 02021 | |
Number of page(s) | 7 | |
Section | Environmental Science and Engineering | |
DOI | https://doi.org/10.1051/e3sconf/202130202021 | |
Published online | 10 September 2021 |
Application of Biochar for Cadmium Stabilization in Contaminated Paddy Soil
Faculty of Applied Science, King Mongkut’s University of Technology North Bangkok, Thailand
* Corresponding author: warapong.t@sci.kmutnb.ac.th
Cadmium contamination in rice fields near zinc mines in Mae Sot District, Tak Province has been a persistent problem for decades. The contamination covers a vast area, making several soil remediation methods, such as soil washing or excavation impractical. Phytoremediation would also take several years and interfere with farming. However, there are recent reports on the potential of biochar in cadmium stabilization which resulted in reduced cadmium uptake by rice. Therefore, in this study, several biomaterials were investigated to produce the most suitable biochar for cadmium stabilization in paddy soil in Mae Sot. Rice husk, rice straw and bagasse were selected because of their availability in Mae Sot. Cadmium adsorption efficacy of biochar made from these biomaterials were analyzed using the adsorption isotherm. The results showed that cadmium adsorption by biochar from bagasse, rice husk, and rice straw were in accordance with Freundlich adsorption isotherm equation. By comparing the distribution coefficient, the adsorption efficacy of the biochar was ranked as rice straw> bagasse> rice husk. Therefore, rice straw biochar, which had the highest cadmium adsorption efficacy, was selected for stabilization experiments. After 30 days of incubating contaminated soil with rice straw biochar, the amount of extractable Cd using CaCl2 and EDTA were reduced significantly. The optimal application rate of rice straw biochar was 5% with the incubation period of 20 days. This warrants the next phase of this study which will be conducted in the field experiments in Mae Sot.
Key words: Adsorption Isotherm / Cadmium / Stabilization / Biochar / Paddy / Mae Sot District
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.