Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01043 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202130901043 | |
Published online | 07 October 2021 |
A Hybrid Framework for Heart Disease Prediction Using Machine Learning Algorithms
1 PG Student, Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
2 Professor, Computer Science and Engineering, GRIET, Hyderabad, Telangana, India.
* Corresponding author: lingalachandrika97@gmail.com
Cardiovascular Diseases (CVDs) are the primary cause for the sudden death in the world today from the past few years the disease has emerged greatly as a most unpredictable problem, not only in India the whole planet facing the criticality. So, there is a desperate need of valid, accurate and practical solution or application to diagnose the CVD problems in time for mandatory treatment. Predicting the CVD is a great challenge in the health care domain of clinical data analysis. Machine learning Algorithms (MLA) and Techniques has been vastly developed and proven to be effective and efficient in predicting the problems using the past data. Using these MLA techniques and taking the clinical dataset which provided by the healthcare industry. Different studies were takes place and tried only a small part into predicting CVD with ML Algorithms. In this thesis, we propose the different novel methodology which concentrates at finding appropriate features by using MLA techniques resulting at finding out the accurate model to predict CVD. In this prediction model we are trying to implement the models with different combinations of features and several known classification techniques such as Deep Learning, Random Forest, Generalised Linear Model, Naïve Bayes, Logistic Regression, Decision Tree, Gradient Boosted trees, Support Vector Machine, Vote and HRFLM and we have got an higher accuracy level and of 75.8%, 85.1%, 82.9%, 87.4%, 85%, 86.1%, 78.3%, 86.1%, 87.41%, and 88.4% through the prediction model for heart disease with the hybrid random forest with a linear model (HRFLM).
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.