Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01079 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202130901079 | |
Published online | 07 October 2021 |
Mathematical Modelling and Simulation of liquid steel flow phenomena and temperature distribution in an optimized tundish design of a continuous caster
Jindal Stainless Limited, Industrial Area, O.P. Jindal Marg, Hisar-125011, Haryana, India
- Corresponding author: ankit.bhardwaj@jshl.in
The objective of this study was to analyze the fluid flow of molten steel in a continuous casting tundish using numerical simulations for better inclusion floatation and its separation. The tundish geometry was designed using Autodesk FUSION 360 and the analysis were performed on ANSYS FLUENT. The investigations were done on steady-state as well as transient conditions. To scale back vortexing and turbulence within the tundish, turbo stoppers and flow modulators, e.g. dam and weirs were placed for an optimized and efficient flow inside the tundish and its behavior on the spacious flow structure was explored. The strategic placements of the flow modifiers produced higher turbulence in the recess region of the tundish resulting in better turbulent flow withinside the inlet region of the tundish. Thereby a more homogeneous fluid flow is formed with better conditions for particle separation. Analysing the flow behavior we have determined the inclusion floatation using particle tracking method form dense discrete phase modelling along with multiphase eulerian-lagragian model. Reduction in dead volumes was achieved in the spatial flow due to better intermixing which further reduced the metal loss and increased the yield of the tundish using the fluid flow analysis. Analyzing eddy formations in the spatial geometry of the tundish structure made it easy to evenly distributes the flow-induced shear. This determined the lesser turbulence on the free surface of the steel flow resulting in less reduction of the liquid steel surface.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.