Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01094 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202130901094 | |
Published online | 07 October 2021 |
Optimization of Flexural Strength of Recycled Polyethylene-terephthalate (PET) Eco-Composite using Response Surface Methodology
1 Department of Metallurgical and Materials Engineering, Federal University of Technology, Akure, Ondo State, Nigeria.
2 Department of Mechanical Engineering, Landmark University, Omu-Aran, Kwara State, Nigeria.
3 Department of Mechanical Engineering, Federal University Oye-Ekiti, Ekiti State, Nigeria.
4 Department of Mechanical Engineering, Mount Zion College of Engineering and Technology, Tamil Nadu, India
* Corresponding author: abypublications@gmail.com, adediran.adeolu@lmu.edu.ng.
Recycling and reuse of plastic waste by blending with virgin polymer has been affirmed to be the best way of managing the waste. Equally, agro-waste are best recycled than being burnt off. In the development of stronger and cheaper ecoefficient recycled PET composite for food packaging, this study focused on reinforcement of the blend of 20 wt. % recycled PET (rPET) and 80 wt. % virgin PET (vPET) with snail shell particulate and kenaf fiber via compression moulding process. The process parameters are fiber dosage, particulate dosage, moulding pressure and temperature. Box-Behnken design was engaged in the design of experiment and the samples were produced according to the experimental runs. Result of analysis of variance pinpointed the process factors as significant contributors to the flexural strength response. The model developed was validated to be significant and statistically fit. Interactions between the process variables as revealed by the response surface plots indicated the response was dependent on the interactive pattern between the variables. Response surface optimization showed an optimum flexural strength of 57.16 MPa was attainable at process parameters of 27.27 wt. %, 4.18 wt. %, 3.95 MPa, and 160 ˚C for fiber proportion, particulate proportion, moulding pressure and temperature respectively yielding 34.2 % improvement over the reference 80/20-vPET/rPET matrix. Model validation experiment undergone with the combined parameters and deviation of +0.036 was noted. Since the deviation is insignificant, the model is concluded to be statistically fit for predicting the flexural strength of the developed eco-composite.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.