Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01109 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202130901109 | |
Published online | 07 October 2021 |
Breast Thermograms Asymmetry Analysis using Gabor filters
1 GRIET, Hyderabad, India
2 Sree Vidyanikethan Engineering College, AP, India
Women are far more likely than males to acquire breast cancer, and current research indicates that this is entirely avoidable. It is also to blame for higher death rates among younger women compared to older women in nearly all developing nations. Medical imaging modalities are continuously in need of development. A variety of medical techniques have been employed to detect breast cancer in women. The most recent studies support mammography for breast cancer screening, although its sensitivity and specificity remain suboptimal, particularly in individuals with thick breast tissue, such as young women. As a result, alternative modalities, such as thermography, are required. Digital Infrared Thermal Imaging (DITI), as it is known, detects and records temperature changes on the skin’s surface. Thermography is well-known for its non-invasive, painless, cost-effective, and high recovery rates, as well as its potential to identify breast cancer at an early stage. Gabor filters are used to extract the textural characteristics of the left and right breasts. Using a support vector machine, the thermograms are then classified as normal or malignant based on textural asymmetry between the breasts (SVM). The accuracy achieved by combining Gabor features with an SVM classifier is around 84.5 percent. The early diagnosis of cancer with thermography enhances the patient’s chances of survival significantly since it may detect the disease in its early stages.
Key words: Breast cancer / Digital Infrared Thermal Imaging (DITI) / Gabor filters / edge detection / pattern recognition
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.