Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01150 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202130901150 | |
Published online | 07 October 2021 |
Surface Composite Fabrication by Friction Stir Processing: A Review
Department of Mechanical Engineering, NSUT, New Delhi, India.
Corresponding author: anubhavkaushik10@gmail.com
Newer materials with unique properties are needed to cater the ever-increasing industrial demands to meet new challenges concerning technological advancements. Quest for special materials and processes is prevalent as conventional materials fail to level up. Composite materials promisingly bridge this gap by providing controllable properties at reasonable costs. Their scope of application can further be drastically enhanced by subjecting them to special surface processing treatments. Friction stir processing (FSP) is one such promising process that can meet the stringent applicational demands. Composites are increasingly being used in industries for properties like high strength to weight ratio, increased hardness, stiffness, ductility, corrosion resistance, etc. FSP, a solid-state material modification technique, has proved its caliber in surface composite fabrication. Some attention-seeking advantages of FSP include peerless efficiency, less tool wear rate, and ability to modify material locally are some of many attention-seeking advantages. Despite being cost-effective FSP also manages to eliminate the drawbacks of the conventional manufacturing process. FSP reinforces a special material into the parent material surface to attain specific properties. Properties so developed depend on parameters like: tool geometry, traverse speed, rotation speed, number of passes etc. The present paper aims to review comprehensive information on fabrication of surface composites by FSP, process parameters, properties, industrial applications, and future scope.
Key Words:
Friction stir processing
surface processing treatments
surface composites
material modification
process parameters.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.