Issue |
E3S Web Conf.
Volume 309, 2021
3rd International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2021)
|
|
---|---|---|
Article Number | 01168 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202130901168 | |
Published online | 07 October 2021 |
Design and Analysis of a Remotely Operated Mini Forklift Bot
1 Associate Professor, Department. of Mechanical Engineering., Muffakham jah College of Engineering and Technology, Hyderabad, Telangana, India
2 Bachelor of Engineering, Department of Mechanical Engineering., Muffakham jah College of Engineering and Technology, Hyderabad, Telangana, India
* Corresponding author: hemaautorobo@gmail.com
This work is concerned with the design, analysis and programming of a scaled down version of an electric forklift robot. An advantageous consequence of this device is the development of space saving storage units that allow for efficient packing of lighter goods into areas that while not built for human movement, allow ample space for movement of our forkliftt bot. This is especially important in cases where each cubic meter of the storage unit is valuable, for example, refrigerated goods storage units. Each part of the robot was either carefully selected or designed from scratch in the pursuit of maximizing the load bearing capacity to design-weight ratio. As such, structural analysis was conducted for each part using the Ansys Workbench simulation package. Furthermore, motors that were operated using standard electronic circuits were installed to remotely control the traversal of the bot, while cameras and sensors were employed to monitor its surroundings and movements. The next step was to program the logic circuit and link the various components wired to it. Here the main control device used was an Arduino, which is an integrated open-source electronic platform that allows for precision control of the various electronic components in accordance with the operator’s inputs. The hardware used for passing instructions to the Arduino was a common smart phone on which a self-developed android app was installed. Writing a program for this involves careful calibration of the power and position of the driving components and the electric signals they receive.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.