Issue |
E3S Web Conf.
Volume 314, 2021
The 6th edition of the International Conference on GIS and Applied Computing for Water Resources (WMAD21)
|
|
---|---|---|
Article Number | 04005 | |
Number of page(s) | 6 | |
Section | Geomatics, Remote Sensing and Modelling | |
DOI | https://doi.org/10.1051/e3sconf/202131404005 | |
Published online | 26 October 2021 |
A study of water infiltration basin and clogging using column experiments
1
Laboratory of hydroinformatics, Faculty of Sciences, University Ibn Tofail, Campus Maamora, BP. 133 1400 Kenitra, Morocco.
2
Laboratories of mathematical and analysis, noncommutative geometry and applications, Faculty of Science, Ibn Tofail University, Campus Maamora, BP.133, 1400 Kénitra, Maroc.
The clogging of infiltration basins is the main problem affecting the proper functioning of groundwater artificial recharge systems. In this study, several parameters have been varied to understand their impacts on water infiltration. The experimental results show that the effect of initial humidity is significant for less porous material such as silty soil (Hamri) and sand. The air bubbles are also an important factor to take into consideration since when trapped within porous structures, it forms a barrier for the displacement of water infiltration. The accumulation of suspended particles in stormwater can contribute to clogging by creating a light layer due to the finest particles, which remain in suspension for a long time. Finally, for the tested materials and experimental conditions, we observed that a combination of a silty soil and sand layer in the design of infiltration basins was more practical than a combination of sand and gravel. The latter, despite its high porosity, could release very fine particles; which would create a cement layer of clogging when deposited at the interface. This layer is an obstacle for water infiltration, thus rendering the device thus constructed unsuitably for groundwater recharge, by reducing its life.
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.