Issue |
E3S Web Conf.
Volume 321, 2021
XIII International Conference on Computational Heat, Mass and Momentum Transfer (ICCHMT 2021)
|
|
---|---|---|
Article Number | 02007 | |
Number of page(s) | 13 | |
Section | Energy | |
DOI | https://doi.org/10.1051/e3sconf/202132102007 | |
Published online | 11 November 2021 |
Effect of porous partition height on thermal performance of a ventilated cavity using LBMMRT
1
LTPMP Laboratory. Faculty of Mechanical and Proceeding Engineering, University of Sciences and
Technology Houari Boumediene, Algiers, Algeria
2
Labo of Energy and Mechanical Engineering (LEMI), Faculty of Technology, UMBB, Boumerdes, Algeria
* Corresponding author: lyes.nasseri@gmil.com
The objective of this work is to study the effect of the thickness of a porous separation on the thermal performance in a cavity with displacement ventilation. The cold air jet enters and exits through two openings located in the lower and upper parts of the left wall and the right wall respectively. The other horizontal walls are also adiabatic. The hydrodynamic and thermal characteristics of the transfer were studied for three configurations with the same aspect ratio L/H=2. The height Hp of the porous separation was varied between 0.2 and 0.8 where is placed in the center of the cavity. The transfer rates on the active wall for the thicknesses were studied for different permeability therefore different Darcy numbers varying over an interval:10-6≤Da≤10. The dimensionless Rayleigh and Reynolds numbers were taken from the rows: 10≤Ra≤106 and 50≤Re≤500. The governing equations of momentum and energy were solved by the Lettice Boltzmann Multiple Relaxation Time Method (LB-MRT) D2Q9 for the velocity field and D2Q5 for the temperature field. In order to take into account the introduction of the porous medium, an additional term is added to the standard LB equations based on the generalized model (Darcy model extended to Brinkman-Forchheimer).
© The Authors, published by EDP Sciences, 2021
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.