Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 04006 | |
Number of page(s) | 6 | |
Section | Fuel Cell Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202233404006 | |
Published online | 10 January 2022 |
Response Surface Methodology for 30 kW PEMFC stack characterization
DIME, University of Genoa, Via Montallegro 1, 16145 Genoa, Italy
* Corresponding author: eleonora.gadducci@edu.unige.it
Hydrogen is a promising energy carrier to allow the reach of the zero-emission targets established for the next years. Polymeric Electrolyte Membrane FC are studied inside the HI-SEA laboratory of the University of Genoa, to assess the opportunities of this technology on marine applications. Here, 8 PEMFC stacks, sized 30 kW each for a total power installation of 240 kW, have been tested to draw guidelines for the best system design onboard ships and to deepen the know-how on the experimental management of the technology. During the tests, it was possible to observe the reciprocal influence of some parameters, which may influence the system efficiency. In this work, a statistical investigation is developed to quantify the cell voltage variation correlated to the values of temperature and current. This has been possible thanks to Design Expert (DE), a software developed by Stat-EASE, Inc. Through the Design of Experiment approach, it is possible to evaluate the significance of variables in the FC system, called factors. The experiment under consideration is also characterized by non-controllable factors, cause of disturbances that induce further variability in the response. Eventually, it was possible to analyse the significance of the parameters involved, to build a regression model by performing the analysis of variance with which the significant values are identified, and to assess the presence of outliers.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.