Issue |
E3S Web Conf.
Volume 334, 2022
EFC21 - European Fuel Cells and Hydrogen Piero Lunghi Conference
|
|
---|---|---|
Article Number | 04017 | |
Number of page(s) | 7 | |
Section | Fuel Cell Technologies | |
DOI | https://doi.org/10.1051/e3sconf/202233404017 | |
Published online | 10 January 2022 |
High-temperature PEM Fuel Cell Characterization: an Experimental Study Focused on Potential Degradation due to the Polarization Curve
1 LAPLACE, Université de Toulouse, CNRS, INPT, UPS, Toulouse, France
2 Safran Power Units, F-31019 Toulouse, France
* Corresponding author: baudy@laplace.univ-tlse.fr
High-Temperature Proton Exchange Membrane Fuel Cell constant current ageing tests highlighted that the characterizations used to monitor the state of health of single cells could be potentially degrading. An experimental campaign to analyze potential degradation due to polarization curves was carried out. More exactly, four methodologies to generate a polarization curve including Electrochemical Impedance Spectroscopies (EIS) were cycled 30 times. The tested single cells were based on a commercial PBI Membrane Electrodes Assembly (MEA) with an active surface of 45 cm2 (BASF Celtec®-P 1100 type). Before the first cycling test and after the last cycling one, complete characterizations, composed by a voltammetry and a polarization curve including EIS, were performed. The results show that one of the MEA has a voltage which increased for one of the four methods to obtain the polarization curve. This growth is linked to a decrease of ohmic losses: in an unexpected way, it could be considered as a way to improve the break-in period. Similarly, the monitoring of CO2 emission (as corrosion has been suspected to be involved at high voltage, i.e. low current density) confirms the potential degradation of the electrodes during the measurement of the polarization curve.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.