Issue |
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
|
|
---|---|---|
Article Number | 01033 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202235101033 | |
Published online | 24 May 2022 |
Face recognition method combining SVM machine learning and scale invariant feature transform
Mohammed V University, Systems Analysis, Information Processing, and Industrial Management Laboratory, High School of technology, Mohammadia School Of Engineering
* Corresponding author: benradi.gmail@gmail.com
Facial recognition is a method to identify an individual from his image. It has attracted the intention of a large number of researchers in the field of computer vision in recent years due to its wide scope of application in several areas (health, security, robotics, biometrics...). The operation of this technology, so much in demand in today's market, is based on the extraction of features from an input image using techniques such as SIFT, SURF, LBP... and comparing them with others from another image to confirm or assert the identity of an individual. In this paper, we have performed a comparative study of a machine learning-based approach using several classification methods, applied on two face databases, which will be divided into two groups. The first one is the Train database used for the training stage of our model and the second one is the Test database, which will be used in the test phase of the model. The results of this comparison showed that the SIFT technique merged with the SVM classifier outperforms the other classifiers in terms of identification accuracy rate.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.