Issue |
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
|
|
---|---|---|
Article Number | 01044 | |
Number of page(s) | 6 | |
DOI | https://doi.org/10.1051/e3sconf/202235101044 | |
Published online | 24 May 2022 |
Feature Selection of Arabic Online Handwriting Using Recursive Feature Elimination for Parkinson’s Disease Diagnosis
1 Laboratory LIPI ENS, USMBA Fez, Morocco
2 Laboratory ERMSC, FMPF, CHU Hassan II Fez, Morocco
Parkinson’s disease (PD) is one of the most common neurodegenerative diseases affecting a large population worldwide. Parkinson’s disease is characterized by rigidity, slowness of movement and tremors at rest, these syndromes are frequently manifested in the deterioration of handwriting. The aim of this article is to perform online Arabic handwriting analysis for two types of tasks, TASK 1: copying arabic imposed text and TASK 2: writing arabic desired text. A novel method of handwriting selection features is proposed to obtain the relevant features to efficiently identify subjects with PD, based on Recursive Feature Elimination with Cross-Validation (RFECV), three different RFE estimators were compared: Support Vector Machine, Decision Trees and Random Forest, the selected features have been fed to the same classifiers above to determine the best classifier for predicting Parkinson’s disease. Result: An accuracy of 94.4% was obtained using SVM with Linear kernel, based on 55 features selected using RFE-SVM(Linear) for TASK 1, for TASK 2 an accuracy of 93.7% was obtained using SVM with RBF kernel, based only in 7 features selected using RFE-SVM(Linear). For all the classifiers used, this technique experimentally demonstrates an increase in performance metrics.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.