Issue |
E3S Web Conf.
Volume 351, 2022
10th International Conference on Innovation, Modern Applied Science & Environmental Studies (ICIES’2022)
|
|
---|---|---|
Article Number | 01091 | |
Number of page(s) | 5 | |
DOI | https://doi.org/10.1051/e3sconf/202235101091 | |
Published online | 24 May 2022 |
Evolutionary Machine Learning-Based Energy Consumption Prediction for the industry
1 Engineering for Smart and Sustainable Systems Research, Mohammadia School of Engineers, Mohammed V University in Rabat, Morocco
2 LAMIH, CNRS, UMR-8201, INSA HdF UPHF, Valenciennes 59313, France
* Corresponding author: mouad.t18@gmail.com
In the digitalization of industry and the industry 4.0 environment, it is important to master the accurate forecasting of energy demand in order to guarantee the continuity of production service as well as to improve the reliability of the electrical system while promoting energy efficiency strategies in the industrial sector. This paper proposes machine learning models to predict the energy consumption demand in an industrial plant, which takes into account the at-tributes that directly the consumption. The proposed models in this work include Multiple Linear Regression (MLR), Decision Tree (DT), Recurrent Neural Networks (RNN) and Gated Recurrent United (GRU), which are compared according to their performances criteria which help to find the best forecasting models. Basing on simulation results, it is proven that the MLR approach is the best forecasting method.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.