Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 01044 | |
Number of page(s) | 4 | |
Section | Air Distribution and Ventilation Performance | |
DOI | https://doi.org/10.1051/e3sconf/202235601044 | |
Published online | 31 August 2022 |
Phase change materials influence on temperature variatio buildings
Applied Physics and Electronics, Umeå University, 90187, Umeå, Sweden
* Corresponding author: hongxia.zhou@umu.se
For the design of sustainable buildings, it is crucial with accurate methods to evaluate how alternative constructions will influence thermal comfort, as well as energy efficiency. This study introduces a model to investigate how the use of phase change materials (PCM)in building envelopes can influence the temperature stratification, which also influences the indoor thermal comfort. PCM is characterized by large latent heat in the melting/solidifying process during phase transition. Applications with PCM have been recognized as possible alternatives in building envelopes to improve thermal comfort as well as energy efficiency. The selection of the properties of the PCM, as well as how and where the PCM was installed in the building envelope, are crucial factors to be considered before application in practice.
In this study, a simplified experimental set-up including a hot-box was used. The PCM material Climsel28 with different layers thicknesses was installed in the sidewall of a hot-box. Extruded polystyrene (XPS) foam boards were used as wall insulation material in the study. XPS was installed as a reference case and in different layer combinations with the PCM. The sequence of the XPS and PCM was varied. Temperature and heat flux were measured in different positions of the hot-box and on the tested walls. A 3D COMSOL model was developed to study the thermal performance of the system. The model was validated in the study using the collected experimental data. The results indicated that the developed COMSOL model can reasonably predict the performance of the system, both with and without the incorporation of PCM. Additionally, the measured temperature stratification were theoretically validated by the COMSOL model. The study gives indicative guidance of how PCMs can be installed in building constructions elements to reduce temperature peak loads and thus also contributing to an improvement of the indoor thermal comfort.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.