Issue |
E3S Web Conf.
Volume 356, 2022
The 16th ROOMVENT Conference (ROOMVENT 2022)
|
|
---|---|---|
Article Number | 05065 | |
Number of page(s) | 4 | |
Section | Indoor Air Quality and Airborne Contaminants | |
DOI | https://doi.org/10.1051/e3sconf/202235605065 | |
Published online | 31 August 2022 |
Filtration performance of new reduced graphene oxide air filter material against bacteria in the atmosphere during the initial stage of heating
School of Building Services Science and Engineering, Xi’an University of Architecture and Technology, China
* Yuesheng Fan:fanyuesheng@xauat.edu.cn
With the large-scale outbreak of the COVID-19, people have gradually realized the importance of bioaerosols in the environment, and how to efficiently filter out microbial aerosols in the air, so as to create a safe and healthy air environment is urgent. The non-bacteriostatic F6 non-woven filter material and the synthesized new reduced graphene oxide air filter were tested and analyzed in this paper, and the filtration performance of the material against bacterial aerosols in the atmosphere at the initial stage of heating. The results showed that during the initial stage of heating, the particle size distributions of aerosols in the atmosphere during working days were stageⅠ(>7.0μm)4.34%, stageⅡ(4.7~7.0μm)4.62%, stageⅢ(3.3~4.7μm)13.30%, stageⅣ(2.1~3.3μm)21.11%, stageⅤ(1.1~2.1μm)38.70%, stageⅥ(0.65~1.1μm)17.92%. The particle size distributions of aerosols in the atmosphere on non-working days were stageⅠ(>7.0μm)4.52%, stageⅡ(4.7~7.0μm)13.66%, stageⅢ(3.3~4.7μm)23.04%, stageⅣ(2.1~3.3μm)31.82%, stageⅤ(1.1~2.1μm)15.18%, stageⅥ (0.65~1.1μm)11.78%. The new reduced graphene oxide filter material had a 10% increase in the filtration efficiency of the total bacterial aerosol compared with the ordinary non-woven filter material. Among them, the filtration efficiency of the respirable bacterial aerosol (particle size <4.7μm) was significantly improved by 40%. The results of this study could provide a certain reference for building a safe interior in the post-epidemic era, and also provided reference value for the research and development of functional air filters.
Key words: Initial heating period / Filter material / Planktonic bacteria / Working day / Non-working day / Efficiency
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.