Issue |
E3S Web Conf.
Volume 362, 2022
BuildSim Nordic 2022
|
|
---|---|---|
Article Number | 02003 | |
Number of page(s) | 6 | |
Section | Heatpumps and Solar | |
DOI | https://doi.org/10.1051/e3sconf/202236202003 | |
Published online | 01 December 2022 |
PV self-consumption prediction methods using supervised machine learning
KTH Royal Institute of Technology, Stockholm, Sweden
* corresponding author: nelson.sommerfeldt@energy.kth.se
The increased prevalence of photovoltaic (PV) self-consumption policies across Europe and the world place an increased importance on accurate predictions for life-cycle costing during the planning phase. This study presents several machine learning and regression models for predicting self-consumption, trained on a variety of datasets from Sweden. The results show that advanced ML models have an improved performance over simpler regressions, where the highest performing model, Random Forest, has a mean average error of 1.5 percentage points and an R2 of 0.977. Training models using widely available typical meteorological year (TMY) climate data is also shown to introduce small, acceptable errors when tested against spatially and temporally matched climate and load data. The ability to train the ML models with TMY climate data makes their adoption easier and builds on previous work by demonstrating the robustness of the methodology as a self-consumption prediction tool. The low error and high R2 are a notable improvement over previous estimation models and the minimal input data requirements make them easy to adopt and apply in a wide array of applications.
© The Authors, published by EDP Sciences, 2022
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0 (http://creativecommons.org/licenses/by/4.0/).
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.