Issue |
E3S Web Conf.
Volume 464, 2023
The 2nd International Conference on Disaster Mitigation and Management (2nd ICDMM 2023)
|
|
---|---|---|
Article Number | 07001 | |
Number of page(s) | 7 | |
Section | Multi-Hazard Risk Assessment | |
DOI | https://doi.org/10.1051/e3sconf/202346407001 | |
Published online | 18 December 2023 |
Immobilization of heavy metal contaminants in mining waste through enzyme-induced calcite precipitation biocementation
1 Faculty of Engineering, Universiti Malaysia Sabah, 88400, Kota Kinabalu, Sabah, Malaysia
2 Civil Engineering Department, Universiti Teknologi Malaysia, 81310, Johor Bahru, Johor, Malaysia
3 Department of Civil and Water Resources Engineering, University of Maiduguri, Borno, Nigeria
4 Department of Civil Engineering, Kano University of Science and Technology, Kano, Nigeria
* Corresponding author: jodin@ums.edu.my
The presence of heavy metals affects the properties of soil due to a decrease in the dielectric constant, which increases the risk of contamination. Current conventional treatments are costly, slower, and environmentally unsustainable. Therefore, soil biocementation improvement using enzymatically induced calcium carbonate precipitation has gained attention due to its cost-effectiveness, sustainability, and environmental friendliness. This study investigates the effect of this technique on the retention and immobilization of heavy metal-contaminated mine waste sourced from Lohan Dam, Sabah, Malaysia, under different curing periods (1 and 3 days), degrees of compactions (70 and 80% of the maximum dry density), and curing temperatures (5 °C, 15 °C, and 25 °C) but at constant 1.0M cementation solution using inductively coupled plasma-optical emission spectrometry, acid washing test, and scanning electron microscopy. Results indicate that the treatment effect is immediate and able to increase the retention of heavy metals in the order of Ni> Cu > Pb, with the highest retention observed at 25 °C and higher retention at lower degrees of compaction. SEM images confirm the formation of calcite in soil particles. In conclusion, the optimum treatment conditions for a 1.0 M EICP cementation solution are 25 °C, 70% MDD, and 1-day curing.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.