Issue |
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
|
|
---|---|---|
Article Number | 14009 | |
Number of page(s) | 6 | |
Section | Hydro-Mechanical and Thermal Properties of Bentonites and Bentonite-Based Mixtures - Part I | |
DOI | https://doi.org/10.1051/e3sconf/202338214009 | |
Published online | 24 April 2023 |
Numerical modelling of unsaturated MX-80 bentonite subjected to two different hydration paths and subsequent loading to high-pressures
1 Formerly: Imperial College London, Civil and Environmental Engineering Department, SW7 2AZ London, UK Currently: University of Trento, Civil Environmental and Mechanical Engineering Department, 38123 Trento, Italy
2 Imperial College London, Civil and Environmental Engineering Department, SW7 2AZ London, UK
* Corresponding author: giuseppe.pedone@unitn.it
MX-80 bentonite has been considered as a suitable material for the construction of engineered barriers employed in deep geological radioactive waste repositories. These barriers are generally formed of compacted unsaturated bentonite, the latter experiencing a slow saturation due to its low permeability whileinteracting with the surrounding groundwater. In order to verify the long-term safety requirements of engineered barriers, their response to hydration has to be carefully assessed. As part of the recent European project BEACON (Bentonite Mechanical Evolution), the behaviour of MX-80 bentonite subjected to different hydration paths was investigated in a number of laboratory and field experiments and numerical studies. This paper is concerned with numerical simulations of two laboratory experiments performed during the project, with the objective of examining the predictive capabilities of the proposed numerical modelling approach. The experiments were selected due to the granular state of bentonite at its placement in the testingapparatus, which differed from the large number of previous experiments conducted on specimens of compacted bentonite blocks. The paper provides a brief introduction to the adopted modelling framework, a summary of calibrated parameters for the hydro-mechanical constitutive modelling and the results of numerical simulations, concluding that a satisfactory numerical simulation of the experiments was achieved.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.