Issue |
E3S Web of Conf.
Volume 382, 2023
8th International Conference on Unsaturated Soils (UNSAT 2023)
|
|
---|---|---|
Article Number | 23003 | |
Number of page(s) | 6 | |
Section | Geoenvironmental and Geo Energy Applications of Unsaturated Soil Mechanism - Part II | |
DOI | https://doi.org/10.1051/e3sconf/202338223003 | |
Published online | 24 April 2023 |
Hygro-thermal coupling in earth building materials
Department of Civil, Chemical and Environmental Engineering, University of Genoa, 16145 Genoa, Italy
Raw earth is emerging as a viable building material with lower carbon emissions than conventional concrete and fired bricks. Raw earth is as an excellent passive hygro-thermal regulator, which improves occupants’ comfort while reducing the need for active heating/cooling installations. The coupled hygro-thermal response of earth materials is investigated by exploiting the principles of the thermodynamics of porous media and unsaturated soil mechanics. The degree of coupling between temperature and relative humidity (or water content) depends on the adopted simplifying assumptions. Some of these assumptions are valid for traditional building materials but may not be applicable to raw earth characterised by relatively high levels of liquid/gas permeability. The validity of current approaches is here assessed with reference to earth building via a simple one-dimensional transfer model, which simulates the behaviour of an unbounded earth wall subjected to time-dependent boundary conditions on the two faces. For typical values of water and vapour permeability, the complexity of the governing equations can be greatly reduced by neglecting variations of vapour mass and the dependency of suction on temperature without significantly reducing accuracy. Results are also strongly influenced by both initial state and water retention properties of the earth material.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.