Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01052 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202339101052 | |
Published online | 05 June 2023 |
Racism detection using deep learning techniques
Department of Information Technology, GRIET, India
* Corresponding author: anikethjindal14@gmail.com
With the pervasive role of social media in the socio-political landscape, various forms of racism have arisen on these platforms. Racism can manifest in various forms on social media, both concealed and overt. It can be hidden through the use of memes or exposed through racist comments made using fake profiles to spread social unrest, violence, and hatred. Twitter and other social media sites have become new settings in which racism and related stress appear to be thriving. Racism also spread based on characteristics including dialect, faith, and tradition. It has been determined that racial animosity on social media poses a serious threat to political, socioeconomic, and cultural equilibrium and has even put international peace at risk. Therefore, it is crucial to monitor social media as the primary source of racist opinions dissemination and to detect and block racist remarks in a timely manner. In this study, we aim to detect tweets containing racist text by performing sentiment analysis using both ML and DL algorithms. We will also build a webpage using Flask framework and SQLite for users to interact with the model.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.