Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01057 | |
Number of page(s) | 13 | |
DOI | https://doi.org/10.1051/e3sconf/202339101057 | |
Published online | 05 June 2023 |
The Distributed Deep Learning Paradigms for Detection of Weeds from Crops in Indian Agricultural Farms
Department of Information Technology, GRIET, India
* Yerragudipadu Subbarayudu: subbu.griet@gmail.com
Weeds are a major threat to crops, making early detection critical for maintaining agricultural productivity. Weeds are generally toxic, equipped with thorns and burrs, and can disrupt crop management by contaminating harvests. This research aims to identify weeds in a field using image processing and deep learning techniques. Images were collected from an Indian farm and pre-processed using image processing techniques. The images were then analysed to extract features that distinguish between weed and crop properties. Traditional crop weed identification methods mainly focused on identifying weeds directly but weed species can vary significantly. This study proposes a method that combines deep learning and image processing technology. Identifying weeds in crops is a challenging task that has been addressed through image processing, feature extraction, and image labelling to train deep learning algorithms. The study examines the performance of various deep learning algorithms and convolution neural networks to detect weeds using images obtained from an Indian crop field. Once the input image is identified as a weed or not, the crop class prediction is made. These results could have significant implications for optimizing agricultural fertilizer usage, leading to increased crop yields and less environmental impact.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.