Issue |
E3S Web Conf.
Volume 391, 2023
4th International Conference on Design and Manufacturing Aspects for Sustainable Energy (ICMED-ICMPC 2023)
|
|
---|---|---|
Article Number | 01061 | |
Number of page(s) | 8 | |
DOI | https://doi.org/10.1051/e3sconf/202339101061 | |
Published online | 05 June 2023 |
Density based smart traffic control system using canny edge detection algorithm along with object detection
Department of IT, Gokaraju Rangaraju Institute of Engineering and Technology, Hyderabad, India
* Corresponding author: ledalla.sukanya@gmail.com
It is urgently necessary to combine current advancements to work on the cutting edge inrush hour jam the executives, as urban congestion is one of the world’s biggest concerns. Existing methodologies, for example, traffic police and traffic lights are neither fulfilling nor viable. Consequently, a traffic management system that utilizes sophisticated edge detection and digital image processing to measure vehicle density in real time is developed in this setting. Computerizedimage processing should be used to detect edges. To extract significant traffic data from CCTV images, the edge recognition method is required. The astute edge finder outperforms other processes in terms of accuracy, entropy, PSNR (peak signal to noise ratio), MSE (mean square error), and execution time. There are a number of possible edge recognition calculations. In terms of reaction time, vehicle the board, mechanization, dependability, and overall productivity, this framework performs significantly better than previous models. Utilizing a few model images of various traffic scenarios, appropriate schematics are also provided for a comprehensive approach that includes image collection, edge distinguishing evidence, and green sign classification. Also recommended is a system with object identification and priority for ambulances stuck in traffic.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.