Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01029 | |
Number of page(s) | 7 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601029 | |
Published online | 16 June 2023 |
Decoding human perception for building indoor environmental comfort: Testing the Hue-Heat-Hypothesis via physiological and psychological response analysis
1 Engineering Department, University of Studies of Perugia, Via G. Duranti, 93 (06125), Perugia, Italy
2 CIRIAF – Interuniversity Research Centre, University of Studies of Perugia, Via G. Duranti, 67 (06125), Perugia, Italy
3 Università Telematica eCampus, Novedrate, CO, Italy
* Corresponding author: ilaria.pigliautile@unipg.it
The recent energy crisis limits humans’ adaptation capability to climate change in indoors, making access to active air conditioning prohibitive. Since lighting systems are less energy-consuming then conditioning systems, this work focuses on visual stimuli to affect occupant’s thermal perception in the framework of the multi-domain comfort theory. Despite the Hue-Heat-Hypothesis has already been explored, validation is still missing. The following hypotheses were outlined: (i) different coloured lights lead to changes in thermal perception that are stronger under thermally comfortable conditions; (ii) visual and thermal domains synergistically interact on the overall comfort perception; (iii) skin temperature can be used as a proxy for thermal comfort. 24 volunteers were exposed to 9 scenarios combining 3 types of coloured light (white, blue, and red) with 3 temperature levels (cool, neutral, and warm conditions). Perceptual responses were collected through questionnaires and skin temperature was measured through wearable. Results support the hypothesis that bluish lights lead to cooler sensation especially in a thermally neutral environment. Skin temperature, mainly affected by ambient temperature, was not significantly related to expressed thermal comfort, apparently in contrast with previous literature results, which may highlight an interfering role of coloured lights on investigated thermal perception as cross-modal effect.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.