Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 01064 | |
Number of page(s) | 4 | |
Section | Indoor Environmental Quality (IEQ), Human Health, Comfort and Productivity | |
DOI | https://doi.org/10.1051/e3sconf/202339601064 | |
Published online | 16 June 2023 |
Performance of Machine Learning Algorithms considering Spatial Effects Assessment for Indoor Personal Thermal Comfort in Air-Conditioned Workplace
1 Malaysia-Japan International Institute of Technology, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
2 Razak Faculty of Technology and Informatics, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia.
Personal comfort models were developed to circumvent most of the constraints imposed by the Predicted Mean Vote (PMV) and present adaptive models, which consider the average response of a large population. Although there has been a lot of research into new input features for personal comfort models, the spatial data of the building, such as windows, doors, furniture, walls, fans, and heating, ventilation, and air conditioning (HVAC) systems, (the location of its occupants with those elements), have not been thoroughly examined. This paper investigates the impact of the spatial parameter in predicting personal indoor thermal comfort using various machine learning approaches in air-conditioning offices under hot and humid climates. The Decision Tree, Random Forest, Support Vector Machine, K-Nearest Neighbour, and Neural Network were trained using a field study dataset that was done in nineteen office spaces yielding 628 samples from 42 occupants. The dataset is divided randomly into training and testing datasets, with a ratio of 80% and 20%. This study examines how well machine learning predicts personal thermal comfort with spatial data compared to without spatial data; where the spatial parameters have shown a significant influence on model prediction accuracies, Mean Absolute Error (MAE), and Root Mean Squared Error (RMSE). The result shows the average MAE is decreased by 10.6% with the Random Forest (RF) getting the most MAE reduction by 23.8%. Meanwhile, the average RMSE is reduced by 11.8% with the RF giving the most RMSE cutback by 30.6%. Consequently, the spatial effect analysis also determines which area of the room has cold or heat clusters area that affects thermal comfort that contributes to the design of sustainable buildings.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.