Issue |
E3S Web of Conf.
Volume 396, 2023
The 11th International Conference on Indoor Air Quality, Ventilation & Energy Conservation in Buildings (IAQVEC2023)
|
|
---|---|---|
Article Number | 05014 | |
Number of page(s) | 8 | |
Section | Outdoor Thermal Environments and Impacts of Heat Island Phenomena | |
DOI | https://doi.org/10.1051/e3sconf/202339605014 | |
Published online | 16 June 2023 |
Review of future weather data for building simulations available in Japan and confirmation of its characteristics
1 Faculty of Human and Environment Studies, Kyushu University, Fukuoka, Japan
2 Takenaka Research & Development Institute, Takenaka Corporation, Chiba, Japan
3 Design Department Head Office, Takenaka Corporation, Tokyo, Japan
* Corresponding author: arima@arch.kyushu-u.ac.jp
Buildings use a large amount of energy, depending on the climate. To design buildings with high energy and thermal performance in the future, it is necessary to use weather data that reflect future climatic information. Some future weather files for building simulations have been developed. However, these datasets are based on different predictions, and each future weather file has a different creation process. Such methodological differences may lead to differences in predicting the energy and thermal performance of buildings. Understanding the characteristics of each data type is necessary for its appropriate use. However, limited information is available for properly utilizing future weather data for building simulations. This study aims to provide information on the characteristics of future weather data for better utilization. After thoroughly reviewing the existing data and creation methods, we propose a framework for understanding future weather data based on their creative process. We collected five types of future weather datasets available in Japan and compared their characteristics. One of these datasets is the future weather dataset based on climate information provided by the National Institute for Environmental Studies (NIES). We confirmed the degree of variation in each weather element and predicted cooling/heating demand using future weather data available in Japan.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.