Issue |
E3S Web Conf.
Volume 399, 2023
International Conference on Newer Engineering Concepts and Technology (ICONNECT-2023)
|
|
---|---|---|
Article Number | 03001 | |
Number of page(s) | 11 | |
Section | Material Science | |
DOI | https://doi.org/10.1051/e3sconf/202339903001 | |
Published online | 12 July 2023 |
Performance assessment on manufacturing of unfired bricks using industrial wastes
1 Assistant professor, Department of Civil Engineering, M. Kumarasamy College of Engineering, Karur – 639 113, India
2 UG Scolar, Department of Civil Engineering, M. Kumarasamy College of Engineering, Karur – 639 113, India
* Corresponding author: balaji.anbu465@gmail.com
This paper presents eco-friendly unburnt bricks made up of fly ash, waste plastic powder, waste glass powder, lime, gypsum and crusher sand as alternatives to conventional burnt clay bricks for sustainable development. The research focuses on the maximum utilization of industrial waste in eco-friendly unburnt brick production. Materials are characterized according to their chemical and geotechnical properties. In this research, we use a milled waste glass powder of size less than 600μm and plastic powder obtained from plastic waste of size less than 600μm are added along with crushed sand, gypsum, lime and fly ash with various mix proportions concerning FaL-G mix concept. All the proportions were taken on a weight basis. Compressive strength, water absorption, and efflorescence are the key parameters chosen for comparing the innovative brick with conventional fly ash brick. There are five different mixes (Type A, B, C, D & E) are made in this research. The plastic and glass powders are replaced by crusher sand at the increased rate of 2% in every mix whereas 2%,4%,6%,8%, and 10%. It was found that the type B bricks have 17.63% strength was increased when compared to base mix. From the test results, type B bricks have enhanced mechanical performance when compared to all other mixes.
Key words: waste plastic powder / waste glass powder / crushing strength / water absorption / efflorescence
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.