Issue |
E3S Web Conf.
Volume 412, 2023
International Conference on Innovation in Modern Applied Science, Environment, Energy and Earth Studies (ICIES’11 2023)
|
|
---|---|---|
Article Number | 01002 | |
Number of page(s) | 7 | |
DOI | https://doi.org/10.1051/e3sconf/202341201002 | |
Published online | 17 August 2023 |
A methodology of automatic class diagrams generation from source code using Model-Driven Architecture and Machine Learning to achieve Energy Efficiency
1 Computer Research Laboratory, Faculty of Science, Ibn Tofail University, Kenitra, Morocco;
2 Information and Communication Systems Engineering Research Group, Higher School of Technology, Moulay Ismail University, Meknes, Morocco;
The automated generation of class diagrams is a crucial task in software engineering, facilitating the understanding, analysis, and documentation of complex software systems. Traditional manual approaches are time and energy consuming, error-prone, and lack consistency. To address these challenges, this research presents an automated proposed approach that utilizes Graph Neural Networks (GNNs), a machine learning algorithm, to generate class diagrams from source code within the context of Model Driven Architecture (MDA) and reverse engineering. A comprehensive case study is conducted to compare the results obtained from the automated approach with manually created class diagrams. The GNN model demonstrates high accuracy in capturing the system’s structure, associations, and relationships. Notably, the automated approach significantly reduces the time required for class diagram generation, leading to substantial time and energy savings. By advancing automated software documentation, this research contributes to more efficient software engineering practices. It promotes consistency, eliminates human errors, and enables software engineers to focus on higher-value tasks. Overall, the proposed approach showcases the potential of GNNs in automating class diagram generation and its practical benefits for software development and documentation.
Key words: MDA / ML / GNN / AI / energy / class diagrams / source code / reverse engineering
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.