Issue |
E3S Web Conf.
Volume 412, 2023
International Conference on Innovation in Modern Applied Science, Environment, Energy and Earth Studies (ICIES’11 2023)
|
|
---|---|---|
Article Number | 01090 | |
Number of page(s) | 14 | |
DOI | https://doi.org/10.1051/e3sconf/202341201090 | |
Published online | 17 August 2023 |
DNA technology for big data storage and error detection solutions: Hamming code vs Cyclic Redundancy Check (CRC)
Department of Computer Science, Computer Research Laboratory LaRI, Faculty of Sciences, Ibn Tofail University, Kenitra, Morocco
There is an increasing need for high-capacity, highdensity storage media that can retain data for a long time, due to the exponential development in the capacity of information generated. The durability and high information density of synthetic deoxyribonucleic acid (DNA) make it an attractive and promising medium for data storage. DNA data storage technology is expected to revolutionize data storage in the coming years, replacing various Big Data storage technologies. As a medium that addresses the need for high-latency, immutable information storage, DNA has several potential advantages. One of the key advantages of DNA storage is its extraordinary density. Theoretically, a gram of DNA can encode 455 exabytes, or 2 bits per nucleotide. Unlike other digital storage media, synthetic DNA enables large quantities of data to be stored in a biological medium. This reduces the need for traditional storage media such as hard disks, which consume energy and require materials such as plastic or metals, and also often leads to the generation of electronic waste when they become obsolete or damaged. Additionally, although DNA degrades over thousands of years under non-ideal conditions, it is generally readable. Furthermore, as DNA possesses natural reading and writing enzymes as part of its biological functions, it is expected to remain the standard for data retrieval in the foreseeable future. However, the high error rate poses a significant challenge for DNA-based information coding strategies. Currently, it is impossible to execute DNA strand synthesis, amplification, or sequencing errors-free. In order to utilize synthetic DNA as a storage medium for digital data, specialized systems and solutions for direct error detection and correction must be implemented. The goal of this paper is to introduce DNA storage technology, outline the benefits and added value of this approach, and present an experiment comparing the effectiveness of two error detection and correction codes (Hamming and CRC) used in the DNA data storage strategy.
Key words: Big data / CRC / Error detection / Energy / Hamming / Synthetic DNA / Storage
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.