Issue |
E3S Web Conf.
Volume 414, 2023
2nd International Conference “SUstainable PolyEnergy generation and HaRvesting – SUPEHR23”
|
|
---|---|---|
Article Number | 01001 | |
Number of page(s) | 6 | |
Section | Electrochemical and Alternative Energy Storage | |
DOI | https://doi.org/10.1051/e3sconf/202341401001 | |
Published online | 25 August 2023 |
A novel method for Ion Exchange Capacity characterization applied to Anion Exchange Membranes for Water Electrolysers
1 Ansaldo Green Tech, via N. Lorenzi 8, 16152 Genova, Italy
2 Department of Civil, Chemical and Environmental Engineering (DICCA), University of Genoa, via Opera Pia 15, 16145 Genova, Italy
* Corresponding author: alessio.dalessandro@ansaldoenergia.com
Hydrogen production from water electrolysis, hydrogen fuel cells and redox flow batteries are the right approach for the renewable energy sector because the electricity generated by solar, wind, photovoltaic, hydroelectric can be managed with a carbon-free approach. These technologies all have in common one fundamental component: the membrane. Different types of membranes have been developed for both cationic and anionic exchange, and recently, research activity focalized on improving their performances is very fervent. One fundamental characteristic of a membrane is its Ion Exchange Capacity (IEC), i.e. the density of charged functionalizing groups. Within our research project NEMESI, funded by EU-PNRR (ID: RSH2B_000002), and dedicated to Anion Exchange Membrane Water Electrolysis, we studied and validated a novel alternative method to measure IEC. The present titration methods have limitations for the need of dedicated hardware or qualitative inspection of their color-turning endpoint. The proposed method, based on the redox titration of potassium ferricyanide with ascorbic acid, allows a quantitative and independent assessment based on both potentiometric and spectrophotometric measurements, along with the usually adopted visual observation, as the yellow-colored ferricyanide is reduced to colorless ferrocyanide. Moreover, if compared to the classical Mohr titration with silver nitrate, the new method can be carried out at variable ferricyanide concentrations during the addition of the ascorbic acid, so a complete curve of the redox reaction can be constructed: the initial ferricyanide ion load of the membrane (IEC) can thus be derived in a more precise way than with a single-point evaluation. Only one Ag/AgCl reference electrode and a platinum working electrode are required without any power supply/potentiostat. The proposed method was validated using Anion Exchange Membranes with known IEC.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.