Issue |
E3S Web Conf.
Volume 414, 2023
2nd International Conference “SUstainable PolyEnergy generation and HaRvesting – SUPEHR23”
|
|
---|---|---|
Article Number | 03016 | |
Number of page(s) | 7 | |
Section | Energy Micropolygeneration and Harvesting | |
DOI | https://doi.org/10.1051/e3sconf/202341403016 | |
Published online | 25 August 2023 |
Mechanical design and manufacture of a boundary layer pump
1 Centre for Propulsion and Thermal Power Engineering, Cranfield University, Bedford MK43 0AL, UK
2 Department of Industrial Engineering, University of Florence, 50121 Firenze, Italy
* Corresponding author: e.a.anselmipalma@cranfield.ac.uk
This paper describes the current efforts to develop and manufacture a first prototype for a boundary layer pump as a mean to assess future and more complex designs. Following an approach of “learning by doing”, a previous design was re-assessed from a mechanical/workshop point of view. Budget constraints and in-house manufacturing capabilities were taken into consideration to deliver a new design, suitable for quick production. Challenges such as disc holding, gap spacing, pump intake, discharge nozzles, and tolerances were addressed. Structural analysis has been conducted; where every single component has been modelled and sized accordingly to standard practices. As a support of structural analysis, FEM analysis was also performed with the aim of identifying, discussing, and fixing any potentially critical issues, particularly regarding the bolts holding together the discs into the power shaft. Finally, modal analysis was performed in order to test the dynamic response of the rotor: its critical frequencies would be far from the working range of the machine. This paper gives an overview of the critical issues to be taken into account during the mechanical design of boundary layer pump prototypes for different working fluids in the field of power generation and thermal management.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.