Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 01014 | |
Number of page(s) | 2 | |
Section | Processes and Mechanics | |
DOI | https://doi.org/10.1051/e3sconf/202341501014 | |
Published online | 18 August 2023 |
Formation of dry granular fronts and watery tails in debris flows
1 Centre for Ports and Maritime Safety, Dalian Maritime University, Dalian, 116026, P R China
2 Department of Mathematics and Manchester Centre for Nonlinear Dynamics, University of Manchester, Oxford Road, Manchester M13 9PL, UK
Debris flows are particle-fluid mixtures that pose a significant hazard to many communities throughout the world. Bouldery debris flows are often characterized by a deep dry granular flow front, which is followed by a progressively thinner and increasingly watery tail. The formation of highly destructive bouldery wave fronts is usually attributed to particle-size segregation. However, the moving-bed flume experiments of Davies (N. Z. J. Hydrol., vol. 29, 1990, pp. 18-46) show that discrete surges with dry fronts and watery tails also form in monodisperse particle-fluid mixtures. These observations motivate the development of a new depth-averaged mixture theory for debris flows, which explicitly takes account of the differing granular and phreatic surfaces, velocity shear, and relative motion between grains and fluid to explain these phenomena. This poster presents the theory of Meng et al. (J. Fluid Mech., vol. 943, 2022, A19), which consists of four coupled conservation laws that describe the spatial and temporal evolution of the grain and water thicknesses and depth-averaged velocities. This system enables travelling wave solutions to be constructed that consist of (i) a large amplitude dry flow front that smoothly transitions to (ii) an under saturated body, (iii) an oversaturated region and then (iv) a pure water tail. It is shown that these solutions are in good quantitative agreement with Davies’ experiments at high bed speeds and slope inclinations. At lower bed speeds and inclinations, the theory produces travelling wave solutions that connect to a steady-uniform upstream flow, and may or may not have a bulbous flow front, consistent with Davies’ observations.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.