Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 01030 | |
Number of page(s) | 4 | |
Section | Processes and Mechanics | |
DOI | https://doi.org/10.1051/e3sconf/202341501030 | |
Published online | 18 August 2023 |
Fines-controlled drainage in just-saturated, inertial column collapses
Faculty of Engineering, University of Nottingham, Nottingham, NG7 2RD, UK
* Corresponding author: evyww@nottingham.ac.uk
The wide particle size distributions, over several orders of magnitude, observed in debris flows leads to a diverse range of rheological behaviours controlling flow outcomes. This study explores the influence of different scale grains by conducting subaerial, fully saturated granular column collapse experiments with extreme, bimodal particle size distributions. The primary particles were of a size where their behaviour was controlled by their inertia while a suspension of kaolin clay particles within the fluid phase acts at spatial scales smaller than the pore space between the primary particles. The use of a geotechnical centrifuge allowed for the systematic variation of gravitational acceleration, inertial particle size and the degree of kaolin fines. Characteristic velocity- and time-scales of the acceleration phase of the collapse were quantified using high-speed cameras. Comparing tests containing fines to equivalent collapses with a glycerol solution mimicking the enhanced viscosity but not the particle behaviour of the fines, it was found that all characteristic dynamic quantities were dependent on the degree of fines, the system size, the grain fluid-density ratio and the column– and grain-scale Bond and Capillary numbers. We introduce a fine-scale Capillary number showing that, although surface tension effects at the column scale are negligible, fines do control the movement of fluid through the pore spaces.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.