Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 04002 | |
Number of page(s) | 4 | |
Section | Role of Disturbance | |
DOI | https://doi.org/10.1051/e3sconf/202341504002 | |
Published online | 18 August 2023 |
Keynote lecture. Forecasting the inundation of postfire debris flows
1 U.S. Geological Survey, Box 25046 DFC MS 966 ; Denver, CO 80225, USA
2 U.S. Geological Survey, 1300 SE Cardinal Court, Vancouver, WA 98683, USA
* Corresponding author: krbarnhart@usgs.gov
In the semi-arid regions of the western United States, postfire debris flows are typically runoff generated. The U.S. Geological Survey has been studying the mechanisms of postfire debris-flow initiation for multiple decades to generate operational models for forecasting the timing, location, and magnitude of postfire debris flows. Here we discuss challenges and progress for extending operational capabilities to include modeling postfire debris-flow inundation extent. Analysis of volume and impacted area scaling relationships indicated that postfire debris flows do not conform to assumptions of geometric self-similarity. We documented sensitivity of impacted areas to rainfall intensity using a candidate methodology for generating inundation hazard assessments. Our results emphasize the importance of direct measurements of debris-flow volume, inundated area, and high temporal resolution rainfall intensity.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.