Issue |
E3S Web of Conf.
Volume 415, 2023
8th International Conference on Debris Flow Hazard Mitigation (DFHM8)
|
|
---|---|---|
Article Number | 05010 | |
Number of page(s) | 4 | |
Section | Case Studies and Hazard Assessments | |
DOI | https://doi.org/10.1051/e3sconf/202341505010 | |
Published online | 18 August 2023 |
A Study on the Comparative Analysis of the FLO-2D Model According to Debris Flow Sediment Amount
1 Graduate School of Disaster Prevention, Kangwon National University, S.Korea
2 CND, Samcheok-si, Gangwon-do, S.Korea
3 School of Civil Engineering, Chungbuk National University, S.Korea
* Corresponding author: cdjang79@gmail.com
It is very important to predict the extent of the damage in order to reduce or prevent damage by the debris flow. In the Republic of Korea, various methods are used to understand the characteristics and to estimate the occurrence of the debris flow in an undamaged area, such as simulating disasters using the estimation of debris flow sediment amount based on field survey data. In this study, the runout distance of debris flow was analyzed by using different methods for estimating the debris flow sediment amount, at Wondeok-eup, Samcheok-si, Gangwon-do, where debris flow occurred due to Typhoon Mitak in 2019. The simulation results of the damage area were compared with the actual damage area. The result showed that the simulations generally corresponded to the actual area of damage caused by the sedimentation of debris flow. However, the estimation of damage area varied according to the used method of calculating the debris flow sediment amount.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.