Issue |
E3S Web Conf.
Volume 419, 2023
V International Scientific Forum on Computer and Energy Sciences (WFCES 2023)
|
|
---|---|---|
Article Number | 02023 | |
Number of page(s) | 9 | |
Section | Applied IT Technologies in Energy and Industry | |
DOI | https://doi.org/10.1051/e3sconf/202341902023 | |
Published online | 25 August 2023 |
Development of the mathematical model for calculating player ratings using soft calculations
1 Department of Computer Systems, Kazan National Research Technical University named after A. N. Tupolev – KAI, Kazan, Russia
2 Department of Automated Information Processing and Control Systems, Kazan National Research Technical University named after A. N. Tupolev – KAI, Kazan, Russia
* Corresponding author: nppashin@kai.ru
This research signifies an ambitious step forward in sports analytics, aiming to formulate a novel mathematical model that assesses team sports players’ performance with higher precision. It aspires to unravel a deeper understanding of player abilities, a complex task that requires advanced computational modeling and statistical analysis. The proposed model is built upon cutting-edge soft computing techniques. These techniques – fuzzy logic, neural networks, and genetic algorithms - are expertly integrated, each contributing unique elements to enhance the model’s accuracy and dependability. Fuzzy logic, with its capacity to handle ambiguity, provides nuanced evaluations, accounting for sports’ inherent uncertainties. Neural networks offer the model a capacity to learn and evolve, refining its evaluations as it processes new data. Genetic algorithms, modeled on natural evolution, optimize the model’s decision-making process, highlighting the most successful player strategies. This innovative approach could reshape player evaluations, replacing one-dimensional, static metrics with a dynamic, multi-faceted framework. Coaches, managers, and analysts will be equipped with a robust tool for decision-making and talent sourcing, ushering in a new era of sports analytics.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.