Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01027 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202343001027 | |
Published online | 06 October 2023 |
TEXT2AV – Automated Text to Audio and Video Conversion
1 Department of CSE (AIML), GRIET, Hyderabad, Telangana State, India
2 Uttaranchal Institute of Technology, Uttaranchal University, Dehradun, 248007, India
* Corresponding author: sanjeeva1690@grietcollege.com
The paper aims to develop a machine learning-based system that can automatically convert text to audio and text to video as per the user’s request. Suppose Reading a large text is difficult for anyone, but this TTS model makes it easy by converting text into audio by producing the audio output by an avatar with lip sync to make it look more attractive and human-like interaction in many languages. The TTS model is built based on Waveform Recurrent Neural Networks (WaveRNN). It is a type of auto-regressive model that predicts future data based on the present. The system identifies the keywords in the input texts and uses diffusion models to generate high-quality video content. The system uses GAN (Generative Adversarial Network) to generate videos. Frame Interpolation is used to combine different frames into two adjacent frames to generate a slow- motion video. WebVid-20M, Image-Net, and Hugging-Face are the datasets used for Text video and LibriTTS corpus, and Lip Sync are the dataset used for text-to-audio. The System provides a user-friendly and automated platform to the user which takes text as input and produces either a high-quality audio or high-resolution video quickly and efficiently.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.