Issue |
E3S Web Conf.
Volume 430, 2023
15th International Conference on Materials Processing and Characterization (ICMPC 2023)
|
|
---|---|---|
Article Number | 01133 | |
Number of page(s) | 10 | |
DOI | https://doi.org/10.1051/e3sconf/202343001133 | |
Published online | 06 October 2023 |
SMART Materials for Biomedical Applications: Advancements and Challenges
1 Department of Physics, Vardhaman college of Engineering, Shamshabad, 501218
2 Institute of Aeronautical Engineering, Hyderabad, India
3 Lloyd Institute of Engineering & Technology, Knowledge Park II, Greater Noida, Uttar Pradesh 201306
4 Lloyd Institute of Management and Technology, Plot No.-11, Knowledge Park-II, Greater Noida, Uttar Pradesh, India - 201306
5 Radiology Techniques Department, College of Medical Technology, The Islamic University, Najaf
6 Lovely Professional University, Jalandhar-Delhi G.T. Road (NH-1), Phagwara, Punjab ( INDIA ) – 144411
* Corresponding Author: akularajitha32@gmailcom
The advancement of SMART (Self-Healing, Multifunctional, Adaptive, Responsive, and Tunable) materials has had a significant impact on the domain of biomedical applications. These materials possess distinct characteristics that exhibit responsiveness to alterations in their surroundings, rendering them exceedingly appealing for a wide range of therapeutic applications. This study aims to examine the progress and obstacles related to SMART materials within the field of biomedicine. In recent decades, notable advancements have been achieved in the development, synthesis, and analysis of intelligent materials specifically designed for biomedical purposes. Self-healing materials have been employed in the development of implants, wound healing scaffolds, and drug delivery systems, drawing inspiration from natural regeneration mechanisms. The ongoing advancements in SMART materials have significant opportunities for transforming biological applications. The progression of nanotechnology, biomaterials, and bioengineering is expected to play a significant role in the advancement of materials that possess enhanced qualities and capabilities. The integration of SMART materials with emerging technologies such as 3D printing, gene editing, and microfluidics has the potential to create novel opportunities in the field of precision medicine and personalised healthcare. The effective translation of SMART materials from the laboratory to the clinic will need concerted efforts by researchers, physicians, regulatory agencies, and industry partners to address the present difficulties.
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.