Issue |
E3S Web Conf.
Volume 453, 2023
International Conference on Sustainable Development Goals (ICSDG 2023)
|
|
---|---|---|
Article Number | 01015 | |
Number of page(s) | 11 | |
DOI | https://doi.org/10.1051/e3sconf/202345301015 | |
Published online | 30 November 2023 |
Credit Card Fraud Detection Methods: A Review
Departement of Computer Science & Engineering., Madhyanchal Professional University Ratibad, Bhopal, M.P., INDIA
* Corresponding author: chetanhpatil@gmail.com
In today’s context, the term “fraud” has become closely intertwined with credit card-related deceit. Recent years have witnessed a notable surge in both credit card utilization and fraudulent activities. Detecting and thwarting fraud necessitates a meticulous analysis of customers’ spending patterns. The ubiquity of credit card use for both online and in-store transactions has un-fortunately led to a parallel rise in recognition valentine scam occurrences. While the primary area of deception discovery is the documentation of sham incidents, the urgency of promptly flagging such events cannot be overstated. The con-temporary landscape heavily favors credit card usage, a trend that inadvert-ently contributes to the annual expansion of fraudulent gains. This unlawful practice exerts a pernicious influence on the global economy at large, exac-erbating its impact year after year. Numerous cutting-edge methods, including as data mining, machine learning, fuzzy logic, genetic programming, sequence alignment, artificial intelligence, and fuzzy logic, have become indispensable in the fight against this threat when it comes to identifying credit card fraud. This study delves into the intricate integration of data mining methodologies, showcas-ing their robust potential to provide comprehensive coverage against fraudu-lent activities while maintaining a controlled balance between false alarms and detection accuracy. Within the financial sector, the challenge of credit card fraud detection remains both persistent and pressing. This paper intro-duces an innovative paradigm aimed at fortifying credit card fraud detection. This is achieved by synergistically harnessing the capabilities of the Artificial Underground Over-sampling Practice (SMOTE), the potency of Adaptive Increasing (ADABoost), and the privacy-enhancing attributes of Federated Learning. The incorporation of federated learning serves a dual purpose: not only does it address prevailing data privacy concerns, but it also significantly augments the precision of fraud detection across a diverse array of geograph-ically distributed data sources
Key words: Adaptive Boosting / Machine Learning (ML) / Synthetic Minority Over-sampling Technique(SMOTE)(ADABoost)
© The Authors, published by EDP Sciences, 2023
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.