Issue |
E3S Web Conf.
Volume 476, 2024
The 4th Aceh International Symposium on Civil Engineering (AISCE 2023)
|
|
---|---|---|
Article Number | 01009 | |
Number of page(s) | 9 | |
DOI | https://doi.org/10.1051/e3sconf/202447601009 | |
Published online | 17 January 2024 |
Seismic Performance of IWF Flexural Link in Inverted-V Eccentrically Braced Frames With Different Stiffener Spaces
1,2,3 Civil Engineering Department, University of Syiah Kuala, Banda Aceh 23111 Indonesia
4 Civil Engineering Department, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Japan 464-8601
1 Corresponding author: muhammadfujihanafi@gmail.com
Resistant structures, such as Eccentrically Braced Frames (EBFs), are required to be established in earthquake-hazard areas. In EBFs, an essential beam component, known as link, plays a crucial role in determining the performance of these structures. As the seismic energy dissipator, link experiences failure to prevent heavy damage to other EBFs members, such as beams and columns. Although several studies have been carried out to enhance the seismic performance of link, there is still limited regarding these elements. Therefore, this study aimed to investigate several IWF flexural links constructed in FE models of Inverted-V EBFs. A total of three flexural links with different stiffener spaces were considered namely non-spacing, 250 mm, and 100 mm stiffener spacing links. To assess their performance, cyclic loading with yield displacement control was used in EBFs models. Observations were mainly conducted on EBFs performances consisting of strength, stiffness, and dissipation energy. The results showed that the best seismic performance was specified on a 100 mm-stiffener spacing link by presenting the largest and most stable hysteresis curve. Based on these results, the configuration of the narrow space stiffener in the link element was recommended to improve the seismic performance of EBFs.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.