Issue |
E3S Web of Conf.
Volume 482, 2024
Young Scholar Symposium on Science Education, Earth, and Environment (YSSSEE 2023)
|
|
---|---|---|
Article Number | 03004 | |
Number of page(s) | 9 | |
Section | Applied Science (Biology, Chemistry, and Physics) for Sustainability | |
DOI | https://doi.org/10.1051/e3sconf/202448203004 | |
Published online | 29 January 2024 |
Control System for Quadcopter UAV based SMC-RBFNN with External Disturbance
Department of Engineering Physics, Faculty of Industrial Technology and System Engineering, Institut Teknologi Sepuluh Nopember, Indonesia
* Corresponding author: delimapalwa@gmail.com
Unmanned aerial vehicles (UAVs) can either be flown autonomously or remotely by a pilot. Due to its many benefits, including the capacity to take off and land vertically and the ability to take off and land in a small space, this form of UAV quadcopter is currently the subject of extensive research. An autonomous UAV is being developed to reduce the likelihood of pilot operating errors when managing the UAV. The quadcopter dynamic system in this study was controlled primarily by a radial basis function neural network (RBFNN), and its performance was evaluated using simulation on a test track with outside disturbances. One test track is used for the simulation, and there are no outside disturbances. Input of external noise occurs concurrently for x, y, and z coordinates. The average of error for the control system SMC and SMC-RBFNN without disturbance is 0 according to the simulation results. Additionally, the SMC control system’s of error with external disturbances is 0.74, whereas it is 0.54 for the SMC-RBFNN control system. This is demonstrated by the system’s ability to return to the test track at the present within 9 seconds while employing the SMC-RBFNN controller. In contrast, the system can reach the test track in 18 seconds while using the SMC. The SMC- RBFNN is one of the suitable control strategies for flight missions with external disturbances, it may be inferred.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.