Issue |
E3S Web Conf.
Volume 592, 2024
International Scientific Conference Energy Management of Municipal Facilities and Environmental Technologies (EMMFT-2024)
|
|
---|---|---|
Article Number | 01012 | |
Number of page(s) | 10 | |
Section | Solar and Wind Energy, Energy Materials | |
DOI | https://doi.org/10.1051/e3sconf/202459201012 | |
Published online | 20 November 2024 |
Mathematical modeling and comparative analysis of baffle types in heat exchange equipment
Kazan National Research Technological University, 68, Karl Marx st., 420015, Kazan, Russia
* Corresponding author: c888aa@mail.ru
The development of digital technologies has significantly increased the effectiveness of production and research, especially in the oil and gas industry, where mathematical modeling plays a significant role in equipment design. This paper presents research aimed at developing digital twins of process equipment and focuses on heat exchangers with different types of baffles. The main focus is on comparing the effectiveness of segmental, helical, spiral and disk-ring type baffles as well as tube finning for heat transfer intensification. Numerical experiments using ANSYS CFX for modeling of hydrodynamics and heat transfer in shell and tube heat exchangers with different baffle designs have been carried out. The results showed that disk-ring baffles provide the highest effectiveness of heat transfer, but lead to inhomogeneous velocity and pressure distributions. Spiral baffles showed a significant improvement in heat transfer with relatively low hydraulic resistance, despite difficulties in fabrication and installation. Segmental baffles remain the most popular due to their simplicity and low cost, while rod baffles require further research due to their low effectiveness and high resistance. The paper concludes by recommending the development of digital twins and their use in equipment design, modernization and operation to select optimal mode parameters and solve structural optimization objectives, which has a positive effect on the effectiveness and reliability of equipment in operation.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.