Issue |
E3S Web of Conf.
Volume 490, 2024
5th International Symposium on Architecture Research Frontiers and Ecological Environment (ARFEE 2023)
|
|
---|---|---|
Article Number | 01017 | |
Number of page(s) | 6 | |
Section | Material Performance Simulation and Low-Carbon Building Design | |
DOI | https://doi.org/10.1051/e3sconf/202449001017 | |
Published online | 14 February 2024 |
Structural behavior of concrete-filled steel tubular (CFST) with spherical cap gap subjected to corrosion and long-term tensile loading
College of Transportation and Civil Engineering, Fujian Agriculture and Forestry University, Fujian 350108, China
* Corresponding author: feiyu.liao@fafu.edu.cn
Concrete-filled steel tubes (CFSTs) are commonly used as structural specimens in construction. Gaps between the steel tube and enclosed concrete core can form during manufacture or repair procedures. This study developed a computational model to investigate the structural implications of spherical cap gaps in CFSTs subjected to sustained axial tension and chloride-induced corrosion. Finite element analysis (FEA) incorporated appropriate material constitutive laws and elements. Model predictions closely matched experiments for load-displacement response and ultimate capacity. Parametric comparisons between gap and no-gap geometries quantified performance impacts, including reduced stiffness, deteriorated load transfer, internal force redistribution, and diminished flexibility stemming from localized steel tube buckling adjacent to the unrestrained gap. Outcomes highlight the importance of quality control during CFST production and repair to minimize defects like uncoupled zones between the concrete infill and hollow tube. The validated simulation approach provides an efficient tool for exploring gap influences and informing structural design provisions.
© The Authors, published by EDP Sciences, 2024
This is an Open Access article distributed under the terms of the Creative Commons Attribution License 4.0, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Current usage metrics show cumulative count of Article Views (full-text article views including HTML views, PDF and ePub downloads, according to the available data) and Abstracts Views on Vision4Press platform.
Data correspond to usage on the plateform after 2015. The current usage metrics is available 48-96 hours after online publication and is updated daily on week days.
Initial download of the metrics may take a while.